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Effects of product dissociation and preferential diffusion on the structure, 
propagation and diffusional-thermal instability of the classical one-dimensional 
laminar flame have been studied by using activation energy asymptotics. Analytical 
expressions as functions of dissociation and diffusion parameters have been obtained 
for such bulk flame parameters as the flame temperature reduction and the 
propagation rate eigenvalue, and for the dispersion relation governing flame 
stability. Results on flame propagation show that while under most situations the 
flame speed is reduced due to product dissociation, it can attain values in excess of 
the non-dissociative limit for highly mobile product species which can preferentially 
back diffuse to the upstream portion of the reaction zone where they recombine and 
release the associated recombination heat. Results on flame stability show that it is 
promoted in the presence of product dissociation which has a moderating influence 
on the flame temperature fluctuations, and for highly-mobile product species because 
of the enhanced burning rate and curvature-induced concentration modification. 

1. Introduction 
The application of activation energy asymptotics has recently made possible the 

successful analyses of a variety of phenomena related to the stability of laminar 
flame propagation. Notable among them are the diffusional-thermal stability of 
adiabatic (Sivashinsky 1977) , non-adiabatic (Joulin & Clavin 1979) and stretched 
(Sivashinsky, Law & Joulin 1982) flames, and the combined diffusional-thermal and 
hydrodynamic instability of the adiabatic flame (Clavin & Williams 1982 ; Pelce & 
Clavin 1982; Matalon & Matkowsky 1984). 

In  these previous studies the reaction between fuel and oxidizer is assumed to be 
one-step, irreversible and complete, producing certain products which are taken to 
be in frozen equilibrium. This leads to the most intense burning possible because of 
the complete conversion of the available chemical energy to thermal energy. 
However, since product dissociation invariably occurs to various extents, in realistic 
situations a certain amount of energy is withheld from the combustion process of 
interest . 

Recently Chao & Law (1988) successfully analysed the propagation of adiabatic 
and non-adiabatic flames in dissociation equilibrium, adopting the reaction scheme 
originally proposed by Williams & Peters (1985) for the study of the structure of 
diffusion flames. This scheme, relevant for hydrocarbon oxidation, can be expressed 
as 

kf KP 
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which states that fuel (F) and oxidizer (0) undergo a one-step irreversible and 
complete reaction to form products P, and P,, which further partially dissociate into 
Q1 and Qz such that dissociation equilibrium is maintained between P,, P,, Q1 and 
Q,. In  (1 . l )  k, is the reaction rate constant for the oxidation step, K p  the equilibrium 
constant for the dissociation-recombination process, and vi the stoichiometric 
coefficient of i although the specific value of unity is assumed for up,,  up,, vQ, and 

in order to facilitate the analysis. The work of Chao & Law (1988) yields the 
vQZ 

interesting result that dissociation alone cannot cause extinction of an adiabatic 
flame. 

I n  the present study we shall apply reaction scheme (1.1) to  assess the effect of 
dissociation equilibrium on the diffusional- thermal stability of laminar flame 
propagation. The fundamental interest here arises from the recognition (Joulin & 
Clavin 1979) that heat loss to the environment promotes the onset of flame-front 
diffusional-thermal instability. Since product dissociation can be interpreted as an 
internal ‘heat loss’ mechanism as far as the total heat budget is concerned, it is 
relevant to understand the influence of this ‘heat loss ’ mechanism on flame-front 
stability. 

An auxiliary contribution of the present study is the derivation of the basic 
solution and thereby identification of the structure of the undisturbed flame 
propagation, in dissociation equilibrium and with preferential diffusion. An especially 
interesting result that  emerges from the analysis is the possibility that the 
propagation speed of a flame in dissociation equilibrium can actually exceed the 
corresponding value when dissociation is suppressed. 

The formulation, basic solution, stability solution and discussion of results will be 
presented in the following sections. 

2. Formulation 
The problem we are studying is the steady propagation of a planar, one- 

dimensional laminar flame in the doubly-infinite domain. With conventional 
assumptions, the equations governing the conservation of energy and species 
concentrations can be expressed as 

?V 
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where t is the time, p the density, T the temperature, the mass fraction, K. the 
molecular weight, c p  an average specific heat a t  constant pressure, A the thermal 
conductivity, Da the mass diffusivity, v the flow velocity vector, and 

QF = hOFfPOh~-~P[hOplf(WP,/WPl) (2.6) 

pb = [ (wQl/wP,)h~l+(wQg/wPl)h~~-[h~l+(WPg/WPI) %z], (2.7) 

are respectively the heat of reaction per unit mass of fuel oxidized and the 
heat absorbed per unit mass of P, dissociated, where ,uo = (vo W0)/(vF WF), ,up = 
Wpl/(vF WF), and p ,  c p ,  h and Df are assumed to be constants. 

For the chemical source terms, we first assume that the oxidation reaction is one 
step, irreversible and complete, with a rate given by 

where B is the pre-exponential factor and E the activation temperature. For the 
dissociation-recombination equilibrium we define an equilibrium constant 

where 4 is the mole fraction such that the mass fractions 4 of the product species 
P,, QI and Qz are related to  Yp, and 4 through 

& Peters (1985) we approximate I$, by 

K = J e x p  ( - A / T ) ,  

Finally, following Williams 

where K = (4); and A and J are positive constants. 

set of source-free equations 
Using the above relations, it can be shown that (2.1)-(2.5) can be reduced to the 

plus an additional equation containing the source terms, which we choose to be (2.2) 
because of its relative simplicity. 
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Consider the flame front to  be propagating in the -x-direction with its constant 
flame speed u in a flow field which has a constant speed uo in the x-direction, and 
assume for simplicity its otherwise smooth surface to  be perturbed only in the x -  
direction. The location of the flame front can then be defined as 

x*(z, t )  = x,+ (UO-24) t + W ( z ,  t ) ,  

where xo is the unperturbed flame location a t  t = 0, F(z ,  t )  is an implicit flame shape 
function, and 6 the amplitude of the flame-front corrugations. Introdwing the non- 
dimensional quantities 

- - - T =  - T-T-, , YF=- YF YO > YP, = yp, 
7 yo = 

T* - T-, ‘F, -a P O  yF, -a PP yF, -a ’ 

2 = PUC 2 ( x - x X f ) ,  z“=p”Cz,,, t ” = _ p t ,  pu2c j=- pucP F ,  
h h h h 

and the non-dimensional parameters 

A = A/T*,  B = E/T*, u = A / E ,  

where T* = (T-, +qF YF,-,/cp) is the adiabatic flame temperature for the non- 
dissociative flame and the superscript (*) is used to  designate this state, the 
governing equations are transformed to 

where e = (,@)-l, Lei = A/(c,pD,) is the Lewis Number, 

e2vF BAY,, a, e-B 
A =  w, c p  u2 

is the burning rate eigenvalue, 

(2.18) 

(2.19) 
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is the non-Cartesian Laplacian operator, and 

(2.20) 

I n  the above p = O(1) and and A" are both large quantities such that E < 1 and 
a,y are O(1) quantities. The parameters y and a emerge to be of particular 
significance, respectively indicating the extent of dissociation and the sensitivity of 
the dissociation/recombination reactions to temperature variations. Equations 
(2.14)-(2.17) are to be solved subject to the boundary conditions that, 

(2.21) 

Fuel-lean flow is assumed in this problem so that there is complete fuel consumption 
a t  the flame and the amount of the oxidizer remaining far downstream of the reaction 
zone is Yo,,. 

The problem is now completely formulated. The methodology and solution for the 
basic steady state and the linear stability analysis will be outlined in the next two 
sections ; detailed steps in the derivation can be found in Chao (1987). It may also be 
mentioned that the essential requirement of non-unity Lewis numbers for the 
diffusional-thermal instability necessitates a somewhat more involved analysis for 
the steady state basic solutions as compared with that of the unity Lewis number 
case studied previously (Chao & Law 1988). 

- 

3. Steady, planar flame propagation 
For the steady propagation of the planar flame, we set a /a f=  0, a/ad = d/dd and 

A = d2/dZ2 in (2.14)-(2.17), which are then solved in the limit of large activation 
energy, with E 4 1 and a = O(1). 

From studies of non-dissociative flames it is well established that for large 
activation energy reactions the flame structure consists of a thin chemically-reacting 
region separating two broad, upstream unburnt and downstream burnt regions in 
which fuel oxidation effectively does not occur. For the present dissociative flames 
we have assumed, realistically, that  the activation energies for oxidation and the 
dissociation equilibrium constant are of the same order of magnitude, or a = O(1). 
Consequently the upstream unburnt region is also dissociative-recombinatively 
frozen in the presence of O(1) reduction in the flow temperature from the flame 
temperature. This leads to G, - 0 and the decoupling of the governing equations in 
this region, where the subscript (9) designates the steady solution. In  the downstream 
region all properties are uniform because dissociation equilibrium is attained and 
there is no source or sink there. 

In the thin reaction region convection is unimportant such that the controlling 
processes are diffusion, oxidation, dissociation and recombination. The temperature 
in this region is expected to deviate from that of the non-dissociative case by O(s). 
Thus if we designate this deviation by eO1((), where 5 = 2 / e  is the stretched inner 
variable, and el, the value of Ol(fJ at the downstream boundary of this reaction 
region, then 8,, can be used as a parameter to  indicate the effect of dissociation on 
the various flame responses. 
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Thus by separately analysing these three regions and performing the requisite 
matching (Chao 1987), with the Lewis numbers of the various species being expanded 
as 

(3.1) Lei = Z i ,  ,, + eZi, + s2Z,, + . . . (i = F, 0, PI, Ql), 

the bulk flame responses can be represented by the following two key relations, 

(3.3) 

Equation (3.2) allows the determination of Olm for given dissociation-recombination 
parameters a and y ,  while (3.3) gives the burning rate eigenvalue A as function of 
a, y ,  E F , O  and lQl,o. In  the limit of no dissociation, y = 0 such that O,, = 0 and A* = 

1/(2ZF,0). Furthermore, since A N u - ~ ,  we have 

1 - U 
-- 
u* (2Z,,,A)f' 

(3.4) 

4. Diffusional-thermal instability 
We now study the linear stability of adiabatic flame propagation when it is 

subjected to small harmonic perturbations with amplitude 6. Concerning the 
magnitude of 6 relative to 6, we note that most of the linear stability analyses in flame 
propagation have adopted the limit (€/a) + 0 as E -+ 0, although McIntosh & Clarke 
(1984) have recently argued for the rationality of the opposite limit, (a/€) - to  as 
6 4 0 .  While this issue is as yet unsettled, we have ascertained that the dispersion 
relations obtained from separate analyses assuming either limit are the same because 
of the linearized nature of the analyses. Since the purpose of the present study is not 
to resolve this issue on the limits, and since the analysis involving the (€/a) + 0 limit 
is somewhat simpler and more straightforward, the solution sequence as indicated in 
the following is based on this specific limit. 

The analysis involves first perturbing all the flow variables by an amount 
proportional to 6, and then letting the disturbances be harmonic functions of time 
and the transverse distance. For example, for the temperature variation we 
express 

F(Z ,  z", f) = Q(3) + 6F(3, x", f), (4.1) 

and !P(Z,z", f) = i i (Z) f ( z" ,  f), (4.2) 

where f(5, t", = exp (wf+ i&). (4.3) 

Substituting these expressions and the steady-state solutions into the governing 
equations (2.14)-(2.17), expanding, and solving by using asymptotic analysis (Chao 
1987), the dispersion relation for flame stability is derived as 

(4.4) 
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FIGURE 1. Flame temperature reduction parameter, elm, as function of the dissociation 
parameters a( += 0) and y. 

where r = [ i  +4(w+ k 2 ) p  (4.5) 

and el, is given by (3.2). In obtaining (4.4) it has also been found necessary to require 
that ZF,O = lo,o = = 1, implying that the stability analysis is applicable only for 
near equi-diffusion flames except for the diffusion of the dissociated products. For 
ZQ,, = 1, the dispersion relation further reduces to the simple expression 

Finally, in the non-dissociative limit of aOlm + 0, the dispersion relation specializes 
to that of Joulin & Clavin (1979), as expected. 

5. Results and discussion 
The parameters directly related to product dissociation are a and y ,  which 

respectively indicate the sensitivity of the dissociation/recombination reactions to 
temperature variations and the extent of dissociation. The parameter elm, given by 
(3.2) and plotted in figure 1,  represents the reduction of the flame temperature and 
is the most direct indicator of the effect of dissociation on the various flame responses 
due to product dissociation. Figure 1 shows that el, increases with increasing y ,  
which is reasonable because for larger y more thermal energy is withheld through 
dissociation. Furthermore, since aelm increases slower than ay, it is clear that el, 
decreases with increasing a because of the increased difficulty of dissociation 
occurring. It may also be noted that O,, does not depend on the species Lewis 
numbers and therefore is not affected by preferential diffusion. The reason is that for 
unstretched flames preferential diffusion does not affect the flame temperature, and 
thus has no influence on the extent of dissociation which depends only on 
temperature. 

Equation (3.3) gives the expression of the burning rate eigenvalue A as a function 
of the dissociation parameters and the Lewis number of the fuel, I&. Since 
A - u - ~ ,  we find that the flame speed is affected by the Lewis number of the fuel 
as u - Physically, when lF,o is, say, greater than unity, the diffusion length 
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FIGURE 2.  Normalized flame speed, u/u*,  as function of the dissociation parameters a and y ,  
with the diffusion parameter lpl ,o = 1. 
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FIGURE 3. Normalized flame speed, u/u*, as function of the diffusion parameter lQl,o and 
dissociation parameters y and a( = 1). 

of the fuel is shorter than that of heat, implying that a t  the ignition point the slope 
of the fuel profile is steeper than that of heat. The flame therefore experiences more 
fuel in the reaction zone and thus burns faster. The converse argument holds for 

Figure 2 shows the normalized flame speed, given by (3.4), as a function of the 
dissociation parameters for the special case of lQl, ,, = 1, It is seen that the flame speed 
decreases with increasing dissociation strength, i.e. increasing y and decreasing a, 
and monotonically approaches zero as y + co . Figure 3 shows the effect of the Lewis 
number of the dissociated products, lQ1,o, on the flame speed, for a fixed value of 
a = 1 .O. It is seen that the flame speed is higher for smaller value of ZQl, for the same 
extent of dissociation. Furthermore, in some situations the flame speed may be even 
higher than the laminar flame speed. This flame-speed enhancement result can be 
explained as follows. 

k o  < 1,  
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FIGURE 4. Perturbed temperature profiles in the reaction zone for selected values of the diffusion 
parameter lQ,,a, with fixed dissociation parameters of u = y = 1. 

Upon production of the dissociated product, part of it is convected downstream 
towards the burnt side of the flame, while the rest diffuses backwards towards the 
unburnt side. There is no downstream diffusion because of downstream uniformity. 
The amount that diffuses backwards recombines to form the oxidation products as 
they encounter lower temperatures ; complete recombination is achieved at  the 
upstream boundary of the reaction zone. Thus by recapturing part of the thermal 
energy initially withheld by the dissociated products) the burning intensity is 
increased. Such an increase, however, is not sufficient to  compensate for all the 
dissociative loss if the product (back-) diffuses at rates less than, or comparable to, 
that of heat, that is if lQ, ,o  5 1. On the other hand if the product does diffuse fairly 
rapidly, for ZQl ,  sufficiently smaller than unity, then the additional recombinative 
heat release, plus the fact that  this heat release occurs towards the upstream portion 
of the reaction region which has the most pronounced influence on flame propagation, 
can indeed boost the flame speeds to values exceeding the corresponding 
undissociated cases. 

The above concept amounts to a spatial redistribution of the heat release rate and 
thereby modification of the temperature profile in the reaction region. The calculated 
perturbed temperature profiles in the reaction region, S,(C), for a = y = 1 (figure 4) 
confirm this phenomenon. Here we note that although the exact value of el a t  any 
6 depends on where the origin is located and where 00 is considered to be, the relative 
values will not change when shifting the origin. We can therefore see that for smaller 
values of ZQ1,O, 0, is smaller before the chemical reaction is completed, implying an 
overall increase in temperature before the final flame temperature is reached. Also 
note that for smaller values of ZQ1,o, the flame reaches its final temperature earlier 
than situations involving larger values of lQ,,o, thereby further supporting the fact 
that the flame burns faster. Finally, as y + 00, we still have u/u* --f 0 because the 
effect of product dissociation is dominating. 

The stability of the steadily propagating flame is determined by assessing whether 
the disturbance of finite transverse wavenumber, k, grows or diminishes with time. 
This depends on the sign of the real part of the frequency parameter w which is 
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FIGURE 5. Cellular and pulsating stability diagram for flame propagation in dissociation 
equilibrium, with the diffusion parameter ZQ,,o = 1. 
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FIGURE 6. Cellular and pulsating stability diagram showing the effect of the diffusion parameter 
lQ, ,o ,  with fixed dissociation parameters a = y = 1. The broken curves are for the non-dissociative 
flame. 

determined from the dispersion relation. We first consider the stability of flames with 
Z Q l , o  = 1. The neutral stability curves for both the cellular and pulsating instabilities 
are shown in figure 5 in the wavenumber versus perturbed Lewis number plane. 
These curves are determined by setting the real part of o to zero in (4.6). The stable 
and unstable regions are also shown in this figure. The results are the same as those 
of Joulin & Clavin (1979) for the adiabatic non-dissociative flames except that the 
Lewis number of fuel, lF, is now reduced by a factor (1 +aO,,) because aelm is non- 
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negative. Thus the stable region is widened, implying that product dissociation tends 
to stabilize the flame. Physically, when disturbances are applied to a steady flame, 
causing the flame temperature to, say, increase locally, the flame segment will 
propagate faster and become wrinkled. However, with product dissociation, the 
increase in the local flame temperature is accompanied by a corresponding increase 
in the amount of dissociation, which tends to reduce the flame temperature. A similar 
argument can be extended to the case where the disturbance lowers the local flame 
temperature, which then leads to recombinative heat release and consequently the 
tendency for the flame temperature to increase. Thus the effect of the initial 
disturbance is weakened when allowing for dissociation, implying that dissociation 
is stabilizing. 

To identify the effect of the Lewis number of the dissociated product, (4.4) is used 
and the results for the neutral stability curves are shown in figure 6 for a = y = 1.  
Again, it is seen that product dissociation has the effect of stabilizing the flame. It 
is also shown that the stabilizing effect increases with decreasing lQ1+. There are two 
reasons for this result. The first is that the undisturbed flame burns stronger for 
smaller ZQl, ,, and therefore is less susceptible to diffusional-thermal instability. The 
second reason is that when the flame is disturbed, say wrinkled, the coupled effects 
of flame curvature and back diffusion of the dissociated products is stabilizing. This 
point can be demonstrated by considering, for example, the segment of the flame 
which bulges towards the upstream. Then the concentration of the dissociated 
product is diluted as it  back-diffuses towards the flame front. This leads to reduced 
rate of recombinative heat release and therefore tends to weaken the bulge, causing 
it to recede and flatten. 

6. Concluding remarks 
In the present study we have shown that, whilst the dissociation of products, in 

most cases, lowers the flame propagation rate, the latter can be enhanced if the 
dissociation products are highly mobile. In such circumstances the products back- 
diffuse more effectively than heat into the preheat zone, where they recombine and 
reinforce the rate of liberation of chemical energy within the flame. This is an 
interesting concept because i t  demonstrates the possibility of increasing the burning 
rate by modifying the heat release rate and thereby the temperature profile within 
the reaction region. That is, since flame propagation is more sensitive to the 
temperature in the upstream portion, it is advantageous to shift part of the heat 
release from the downstream to the upstream portion. The agents in effecting the 
shift in the present case are the dissociated products. We also note that for realistic 
chemical systems the dissociated products indeed have smaller molecular weights 
and thereby higher mobilities. 
. We have also shown that product dissociation has a stabilizing influence on the 
flame. Thus contrary to the result of Joulin & Clavin (1979) that external heat loss 
tends to destabilize the flame, ‘internal heat loss’ in the form of dissociation is 
recoverable. The recovery process also promotes flame stability. 
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Energy under Contract No. DE-FG03-84ER13274 and the technical monitoring of 
Dr J. Welty. 
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